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Goal and Application Approach W CLEVR-change dataset
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» Goal: Describing the change between two similar images. Overall framework m
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* Practical Applications: — ‘ % et codon Capt-Dual X 38.4 28.5 39.8 18.2
» Medical imaging: Comparing CT images, locating the lesion, and :> |- 1 ~ (ICCV’19)

generating the report of the patient's physical abnormalities. Encoder (CNN) | % INE E'Gcizp:ri;r;j DUDA % 42 9 29 7 94 6 199
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» Aerial photography: Monitoring and describing land dynamics. . %% - based » 2 (ECCV’20)
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@ seif semantic Retation Embedding block (SSRE) | Method | RL| BLEU4 |METEOR | CIDEr | SPICE

1) Learning semantic relations among object features via self-attention; Capt-Dual X 56.3 44.0 108.9 28.7

ICCV’19

2) Modeling the difference representation at both feature and relation levels. ( )
. il DUDA X 59.8 45.2 110.8 29.1

« Ground truth: A person on sidewalk is now gone. @ Cross Semantic Relation I\/Ieasuring block (CSRM) (ICCV’'19)
..Basellne: There is n(.) dlfferen.ce. | | | 1) Measuring relevance between each image and candidate difference; IV:;E\ZZA&I\\;I’;RO?F V - 66.4 122.6 334

Distraction of wewpomtllllumlnatlon Change 2) Distinguishing the real change from irrelevant distractors.
<Before> <After> SRDRL+AVS X 62.2 51.3 117.0 34.9
G Attention-based Visual Switch (AVS) (Ours, ACL'21)

Exploiting visual information dynamically based on the POS of each word.

Qualitative results

Re SU I tS <Before> <After>
* Ground truth: The large green matte sphere that is behind CLEVR-change dataset
the purple cylinder is in a different location. (Total performance on change and nOne-change)
 Baseline: The scene is the same as before.
Motivation - | Total_

Ground Truth:
The tiny blue cylinder
changed its location.

Method RL BLEU-4 METEOR ROUGE  CIDEr SPICE

Previous work (ICCV’19, ECCV’20)
| | Capt-Dual X 43.5 32.7 - 108.5 23.4
» Capturing the semantic change only at feature level; (1CCV’19)
»Misidentifying the distractor change as the real change; DUDA X 47 .3 33.9 - 112.3 24.5

Baseline:

The small blue matte
cylinder that 1s behind
the big blue matte object
1s no longer there.

»Using visual information to generate each word; (ICCV'19) SRDRL:
] M-VAM X 50.3 37.0 69.7 114.9 30.5 The small blue Shiny
Our idea (ECCV’20) cylinder that is to the left
»Capturing the semantic change at feature and relation levels. M-VAM+RAF ¥ 51.3 37.8 70.4 115.8 30.7 of_the tiny green matte
(ECCV’20) thing has been added.
»Measuring semantic relation of candidate difference with SRDRL+AVS:

The small blue metal
cylinder that is behind the
tiny green metallic object
changed its location.

SRDRL+AVS X 54.9 40.2 73.3 122.2 32.9
respect to each image in the image pair. (Ours, ACL’21)
»Using visual information dynamically based on Part-of-
Speech (POS) of words. RL is short for reinforcement learning
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