
Goal and Application

Fine-grained difference

• Ground truth: A person on sidewalk is now gone.

• Baseline: There is no difference.

• Ground truth: The large green matte sphere that is behind 

the purple cylinder is in a different location.

• Baseline: The scene is the same as before.

Motivation

Previous work （ICCV’19, ECCV’20）

➢Capturing the semantic change only at feature level;

Our idea

➢Capturing the semantic change at feature and relation levels.

➢Measuring semantic relation of candidate difference with 

respect to each image in the image pair.

Approach

Overall framework

CLEVR-change dataset 
(The performance of Semantic change)

Qualitative results

Distraction of viewpoint/illumination change
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Results

CLEVR-change dataset 
(Total performance on change and none-change)

<Before> <After>

<Before> <After>

➢Misidentifying the distractor change as the real change;

➢Using visual information to generate each word;

Total

Method RL BLEU-4 METEOR ROUGE CIDEr SPICE

Capt-Dual
(ICCV’19)

× 43.5 32.7 - 108.5 23.4

DUDA
(ICCV’19)

× 47.3 33.9 - 112.3 24.5

M-VAM
(ECCV’20)

× 50.3 37.0 69.7 114.9 30.5

M-VAM+RAF
(ECCV’20)

√ 51.3 37.8 70.4 115.8 30.7

SRDRL+AVS
(Ours, ACL’21)

× 54.9 40.2 73.3 122.2 32.9

*RL is short for reinforcement learning

Self Semantic Relation Embedding block (SSRE)

1) Learning semantic relations among object features via self-attention;

2) Modeling the difference representation at both feature and relation levels.

Cross Semantic Relation Measuring block (CSRM)

1) Measuring relevance between each image and candidate difference;

2) Distinguishing the real change from irrelevant distractors.

1

2

Attention-based Visual Switch (AVS)

Exploiting visual information dynamically based on the POS of each word.
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Method RL BLEU-4 METEOR CIDEr SPICE

Capt-Dual
(ICCV’19)

× 38.4 28.5 89.8 18.2

DUDA
(ICCV’19)

× 42.9 29.7 94.6 19.9

M-VAM+RAF
(ECCV’20)

√ - - - -

SRDRL+AVS
(Ours, ACL’21)

× 52.7 36.4 114.2 30.8

CLEVR-change dataset 
(The performance of None-semantic change)

Method RL BLEU-4 METEOR CIDEr SPICE

Capt-Dual
(ICCV’19)

× 56.3 44.0 108.9 28.7

DUDA
(ICCV’19)

× 59.8 45.2 110.8 29.1

M-VAM+RAF
(ECCV’20)

√ - 66.4 122.6 33.4

SRDRL+AVS
(Ours, ACL’21)

× 62.2 51.3 117.0 34.9

➢Using visual information dynamically based on Part-of-

Speech (POS) of words.

Challenge

• Goal: Describing the change between two similar images.

• Practical Applications:

➢ Medical imaging: Comparing CT images, locating the lesion, and 

generating the report of the patient's physical abnormalities.

➢ Facility monitoring: Generating the report about whether     

there is a change of the monitored facility.

➢ Aerial photography: Monitoring and describing land dynamics.
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