

Problem Definition and Contribution

Goal: Change captioning is to describe the semantic change, while being immune to distractors (viewpoint / illumination) changes) within an image pair in natural language.

Motivations:

- Most unchanged objects appear pseudo changes and partially overlap others: features might be perturbational and discrimination-degraded under distractors.
- Previous works directly subtract or match between two unstable image features, yielding incorrect sentences.

<Change Captions> Ground Truth: There is no change between images.

Previous works: The large red block moved.

Contributions:

- Distractors-Immune Representation Learning (DIRL) captures two distractors-immune image features, so the model can learn the robust difference features.
- Cross-modal Contrastive Regularization (CCR) regularizes cross-modal alignment, helping the decoder generate words based on the most related difference features.

Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning

Yunbin Tu¹, Liang Li², Li Su¹, Chenggang Yan³ and Qingming Huang¹ ¹University of Chinese Academy of Sciences, ²Institute of Computing Technology, CAS ³Hangzhou Dianzi University

$$\tilde{Y}_o = \text{MLP}(\tilde{F}_o), o \in (bef, aft), \quad C_{ij} = \frac{1}{\sqrt{\sum i}}$$

$$C_{dirl} = \sum_{i} (1 - C_{ii})^2 + \alpha \sum_{i} \sum_{j \neq i} C_{ij}^2$$

 \succ Matching two updated features to gain unchanged features:

$$\tilde{F}_{bef}^{s} = CA(\tilde{F}_{bef}, \tilde{F}_{aft}, \tilde{F}_{aft}), \qquad \tilde{F}_{aft}^{s}$$

Removing both from two images to learn difference features: $\tilde{F}_{bef}^d = \tilde{F}_{bef} - \tilde{F}_{bef}^s, \quad \tilde{F}_{aft}^d = \tilde{F}_{aft} - \tilde{F}_{aft}^s, \quad \tilde{F}_d = \text{ReLU}([\tilde{F}_{bef}^d; \tilde{F}_{aft}^d]W_c + b_c))$

CCR: Maximizing the contrastive alignment between the features of attended difference and generated words.

Computing the global representation for word embeddings and attended difference features from the transformer decoder:

 $\tilde{E}[W] = \operatorname{Avg}\left(\operatorname{SA}(\hat{E}[W], \hat{E}[W], \hat{E}[W])\right), \quad \tilde{V} = \operatorname{Avg}\left(\operatorname{CA}(\tilde{E}[W], \tilde{F}_d, \tilde{F}_d)\right)$ \succ Enforcing the contrastive alignment between $\tilde{E}[W]$ and \tilde{V} : $\mathcal{L}_{ccr} = \text{InforNCE}(\text{sim}(\tilde{E}[W], \tilde{V}))$

(sim: dot-product operation)

 $= CA(\tilde{F}_{aft}, \tilde{F}_{bef}, \tilde{F}_{bef})$

Experimental Results

Comparison with existing methods on CLEVR-Change:

Model	BLEU-4	METEOR	ROUGE-L	CIDEr	SPICE
DUDA 24 (ICCV 2019)	42.9	29.7	-	94.6	19.9
DUDA+TIRG 9 (CVPR 2021)	49.9	34.3	65.4	101.3	27.9
MCCFormers-D 25 (CVPR 2021)	53.3	37.1	70.8	119.1	30.4
$R^{3}Net+SSP$ 37 (EMNLP 2021)	52.7	36.2	69.8	116.6	30.3
IFDC 11 (TMM 2022)	47.2	29.3	63.7	105.4	-
I3N 47 (TMM 2023)	53.1	37.0	70.8	117.0	32.1
NCT 33 (TMM 2023)	53.1	36.5	70.7	118.4	30.9
VARD-Trans 31 (TIP 2023)	53.6	36.7	71.0	119.1	30.5
SCORER+CBR 35 (ICCV 2023)	54.4	37.6	71.7	122.4	31.6
SMART 34 (TPAMI 2024)	54.3	37.4	71.8	123.6	32.0
$\mathbf{DIRL} + \mathbf{CCR} \ (\mathbf{Ours})$	54.6	38.1	71.9	123.6	31.8

Ablation study on CLEVR-DC:

Ablation	DIRL	CCR	BLEU-4	ROUGE-L	CIDEr	SPICE
Transformer	· ×	×	48.9	65.6	79.6	15.7
Transformer	· 🗸	×	50.5	65.8	81.8	16.2
Transformer	· X	\checkmark	49.3	65.5	82.7	16.4
Transformer	· 🗸	✓	51.4	66.3	84.1	16.8

Visualization for change localization and caption:

 \succ More experimental results are shown in our paper. > Code is available at: https://github.com/tuyunbin/DIRL.