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Problem Definition and Contribution Experimental ResultsMethodology

Comparison with existing methods on CLEVR-Change:

Ablation study on CLEVR-DC:

Visualization for change localization and caption:

➢ More experimental results are shown in our paper.

➢ Code is available at: https://github.com/tuyunbin/DIRL.

➢ Computing a channel correlation matrix:

Goal: Change captioning is to describe the semantic change, 

while being immune to distractors (viewpoint / illumination 

changes) within an image pair in natural language.

Remove the lady from the 

after image.

A group of people are in a 

different location.

<Before> <After>

<Before> <After>

<Change Captions>

<Change Captions>

Motivations:

• Most unchanged objects appear pseudo changes and 

partially overlap others: features might be perturbational

and discrimination-degraded under distractors.

• Previous works directly subtract or match between two 

unstable image features, yielding incorrect sentences.

<Before> <After>

Ground Truth: There is no 

change between images.

<Change Captions>

Previous works: The large 

red block moved.

Contributions:

• Distractors-Immune Representation Learning (DIRL) 

captures two distractors-immune image features, so the 

model can learn the robust difference features.

• Cross-modal Contrastive Regularization (CCR) regularizes 

cross-modal alignment, helping the decoder generate 

words based on the most related difference features.

DIRL: Correlating corresponding channels and decorrelating 

different channels between two image features.

➢ Enforcing matrix to be identity matrix by ℒ2 -norm minimization:

➢ Matching two updated features to gain unchanged features:

CCR: Maximizing the contrastive alignment between the 

features of attended difference and generated words.

➢ Computing the global representation for word embeddings and 

attended difference features from the transformer decoder:
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➢ Removing both from two images to learn difference features:

෨𝐸 𝑊 = Avg (SA( ෠𝐸 𝑊 , ෠𝐸 𝑊 , ෠𝐸 𝑊 )), ෨𝑉 = Avg (CA( ෨𝐸 𝑊 , ෨𝐹𝑑 , ෨𝐹𝑑))

➢ Enforcing the contrastive alignment between ෨𝐸 𝑊 and ෨𝑉:

ℒ𝑐𝑐𝑟 = InforNCE sim( ෨𝐸 𝑊 , ෨𝑉)

• (sim: dot-product operation)

• SCORER+CBR [ICCV 2023]
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