
Goal and Application

Fine-grained difference

• Ground truth: A person on sidewalk is now gone.

• Baseline: There is no difference.

• Ground truth: The large green matte sphere that is behind 

the purple cylinder is in a different location.

• Baseline: The scene is the same as before.

Motivation
Previous work （ICCV’19, ECCV’20）
➢Modeling the difference representation only at feature level, 

which is difficult to discriminate fine-grained change; 

Our idea

➢Embedding semantic relations among object features to help 

explore the fine-grained change;

➢Modeling the difference representation based on the semantic 

similarities in the corresponding locations of two images;

Approach

Overall framework

CLEVR-change dataset 
(The performance of scene change)

Qualitative results

Distraction of viewpoint change
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Results
CLEVR-change dataset 

(Total performance on change and none-scene change)

<Before> <After>

<Before> <After>

➢Applying simple subtraction between two unaligned images, 

which computes the difference representation with much noise;

Total

Method RL BLEU-4 METEOR ROUGE CIDEr SPICE

Capt-Dual
(ICCV’19)

× 43.5 32.7 - 108.5 23.4

DUDA
(ICCV’19)

× 47.3 33.9 - 112.3 24.5

M-VAM
(ECCV’20)

× 50.3 37.0 69.7 114.9 30.5

M-VAM+RAF
(ECCV’20)

√ 51.3 37.8 70.4 115.8 30.7

R3Net+SSP
(Ours, 

EMNLP’21)

× 54.7 39.8 73.1 123.0 32.6

*RL is short for reinforcement learning

Relation-embedded Module

1) Learning semantic relations among object features via self-attention;

2) Modeling the difference representation at both feature and relation levels.

Representation Reconstruction Module

1) A “shadow” representation (“after’’ or “before”) is used to reconstruct a 

“source” representation (“before” or “after”);
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Syntactic skeletons Predictor

Enhancing the semantic interaction between change localization and 

caption generation.
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Method RL BLEU-4 METEOR CIDEr SPICE

Capt-Dual
(ICCV’19)

× 38.4 28.5 89.8 18.2

DUDA
(ICCV’19)

× 42.9 29.7 94.6 19.9

M-VAM+RAF
(ECCV’20)

√ - - - -

R3Net+SSP
(Ours, 

EMNLP’21)

× 52.7 36.2 116.6 30.3

CLEVR-change dataset 
(The performance of none-scene change)

Method RL BLEU-4 METEOR CIDEr SPICE

Capt-Dual
(ICCV’19)

× 56.3 44.0 108.9 28.7

DUDA
(ICCV’19)

× 59.8 45.2 110.8 29.1

M-VAM+RAF
(ECCV’20)

√ - 66.4 122.6 33.4

R3Net+SSP
(Ours, 

EMNLP’21)

× 61.9 50.5 116.4 34.8

➢Leveraging syntactic skeletons to enhance the interaction 

between change localization and caption generation.

Challenge

• Goal: Describing the change between two similar images.

• Practical Applications:

➢ Medical imaging: Comparing CT images, locating the lesion, and 

generating the report of the patient's physical abnormalities;

➢ Facility monitoring: Generating the report about whether     

there is a change of the monitored facility;

➢ Aerial photography: Monitoring and describing land dynamics.

➢Conducting change localization and caption generation separately.

2) The “difference” representation is computed with the changed feature 

between “source” and “reconstruction” representation.


