

Video Description with Spatial-Temporal Attention

Video Description with opation-remporal Attention

¹Hangzhou Dianzi University, ²Institute of Computing Technology

Yunbin Tu¹, Xishan Zhang², Bingtao Liu¹ and Chenggang Yan¹

Problem

Detail missing

- Ground truth: A man is calling.
- TAT: A man is talking (on the phone).

Recognition error

- Ground truth: A man is cutting a tree.
- TAT: A man is cutting a head.

Motivation

Previous work

Pool5/7 × 7_s1 (Global-Motion)

Coarse frame-level global-motion features are employed

A man is talking

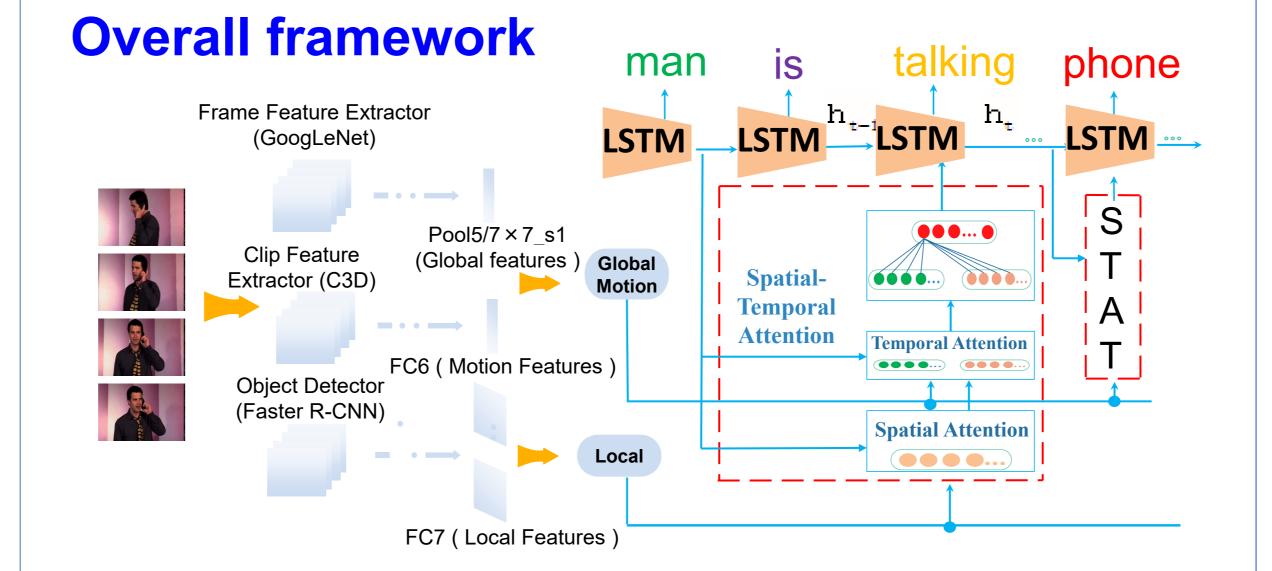
LSTM LSTM

LSTM

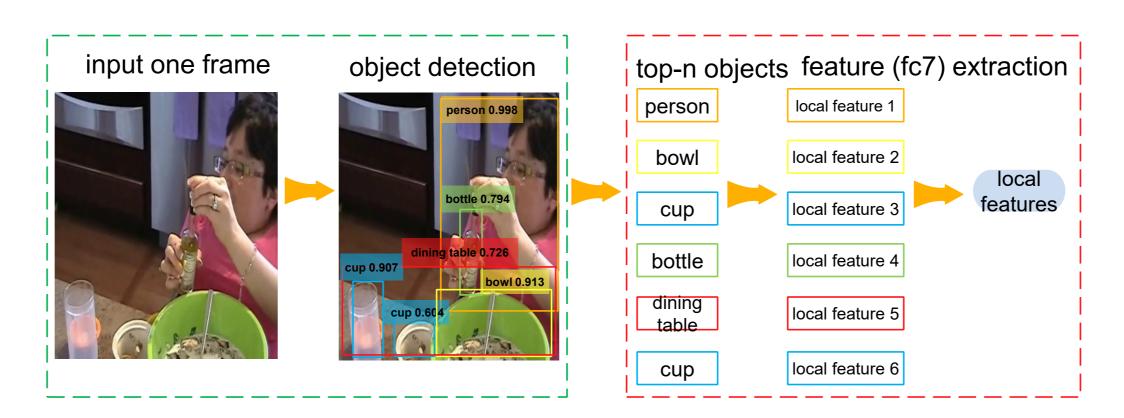
Temporal Attention

A T

Our ideal

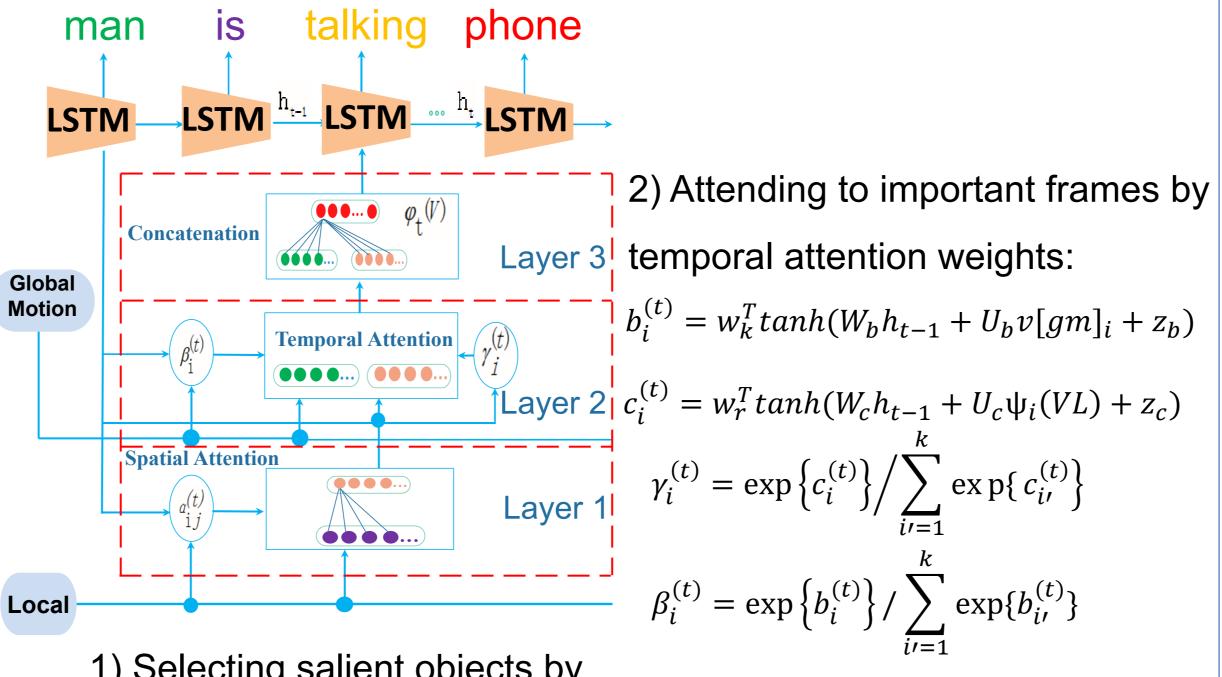

>Adding a new feature— object-level local features

Exploiting local features extracted by Faster R-CNN [19] to address the problem of detail missing.


➤ Spatial-temporal attention mechanism

The proposed two-stage attention mechanism can recognize the salient objects more precisely with high recall and automatically focus on the most relevant spatial-temporal segments given the sentence context.

Approach



1 Local features extraction

- 1)Detecting salient objects by pre-trained Faster R-CNN model;
- 2)Selecting top-n objects as local features by class confidence scores.

Spatial-Temporal Attention mechanism

1) Selecting salient objects by spatial attention weights:

$$e_{ij}^{(t)} = w_l^T tan h(W_e h_{t-1} + U_e v l_{ij} + z_e)$$

$$\alpha_{ii}^{(t)} = \exp\left\{e_{ii}^{(t)}\right\} / \sum_{i=1}^{n} \exp\left\{e_{ii}^{(t)}\right\}$$

3) Concatenating global-motion temporal representation and local temporal representation:

$$\varphi_t(V) = \{\varphi_t(VGM), \varphi_t[\psi(VL)]\}$$

Results

MSVD dataset

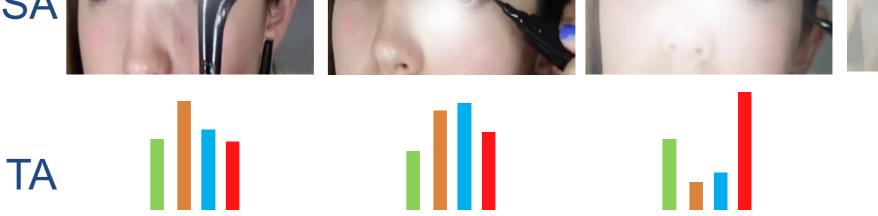
	B@1	B@2	B@3	B@4	METEOR	CIDEr
TAT-NL (G+C)	0.803	0.676	0.572	0.464	0.318	0.625
NAT (G+C+R-fc7)	0.764	0.627	0.521	0.415	0.315	0.629
TAT (G+C+ R-fc7)	0.773	0.642	0.540	0.432	0.307	0.597
STAT (G+C+ R-fc7)	0.826	0.714	0.616	0.511	0.327	0.675
TA[37](G+3D CNN)	0.800	0.647	0.526	0.419	0.296	0.517
LSTM- $E[15](V+C)$	0.788	0.660	0.554	0.453	0.310	-
h-RNN[39](V+C)	0.815	0.704	0.604	0.499	0.326	0.658
HRNE[14](G+C)	0.811	0.686	0.578	0.467	0.339	_
M-Fusion[8](V+C)	0.811	0.703	0.607	0.499	0.318	0.634

¹ (G=GoogLeNet, C=C3D, R-fc7=Faster R-CNN fc7, V=VGG)

MSR-VTT-10K dataset

	Test split			Valid split		
	B@4	METEOR	CIDEr	B@4	METEOR	CIDEr
TAT-NL (G+C)	0.371	0.264	0.398	0.379	0.269	0.405
NAT (G+C+R-fc7)	0.348	0.250	0.365	0.347	0.252	0.350
TAT (G+C+ R-fc7)	0.343	0.243	0.319	0.358	0.247	0.316
STAT(G+C+ R-fc7)	0.374	0.266	0.415	0.380	0.271	0.402
v2t_nagvigator[6]	0.408	0.282	0.448	0.394	0.275	0.480
C3D+Res[18]	-	-	-	0.385	0.267	0.411
SA-LSTM[30]	0.405	0.299	-	-	-	-

¹ (G=GoogLeNet, C=C3D, R-fc7=Faster R-CNN fc7)


Qualitative results

Ground truth: A boy is playing with a dog.

TAT: A boy is playing with a baby. **STAT:** A boy is playing with a dog.

Ground truth: A woman is applying makeup to her eyes.

TAT: A woman is showing how to make a makeup.

STAT: A woman is applying makeup to her face.